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Abstract—Vehicle-infrastructure cooperative perception has
emerged as a promising approach to enhance 3D multi-object
tracking by leveraging complementary data from vehicle and
infrastructure sensors. However, existing methods face significant
challenges, including difficulty in handling occlusions, suboptimal
identity association, and inefficiencies in trajectory management,
limiting their performance in real-world scenarios. In this pa-
per, we propose a novel vehicle-infrastructure cooperative 3D
multi-object tracking framework that addresses these challenges
through three key innovations. First, an integrated detection-
tracking framework jointly optimizes object detection and track-
ing, enhancing temporal consistency and reducing errors caused
by separately handling the two tasks. Second, the XIOU identity
association metric leverages 3D spatial and geometric relation-
ships, ensuring robust object matching even under occlusions.
Third, a four-stage cascade matching (FSCM) strategy adaptively
manages trajectories by leveraging detection and prediction
confidences, enabling accurate tracking in complex environments.
Evaluated on the V2X-Seq dataset, our method achieves a MOTA
of 57.23 and a MOTP of 74.64, significantly reducing identity
switches while ensuring low bandwidth consumption and reliable
tracking, highlighting its effectiveness and suitability for real-
world deployment.
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I. INTRODUCTION

In recent years, while single-vehicle perception for au-
tonomous driving has achieved notable advancements, vehicle-
infrastructure cooperative perception has emerged as a trans-
formative alternative. By integrating data from infrastructure-
side sensors, this approach overcomes the inherent limitations
of vehicle-only systems, such as limited perception range,
blind spots, and lower detection confidence. It extends percep-
tion capabilities, enhances detection accuracy, and improves
system reliability, positioning itself as a critical research focus
in modern autonomous driving.

A cornerstone of vehicle-infrastructure cooperative per-
ception is 3D multi-object tracking (MOT), which ensures
temporal consistency by tracking objects across consecutive
frames. Accurate 3D MOT is pivotal for downstream tasks
like trajectory prediction and collision avoidance, directly
contributing to the safety and effectiveness of autonomous
driving systems. The objective is to accurately localize objects
in 3D space while consistently maintaining their identities over
time.

However, despite advancements in cooperative perception,
3D MOT methods still encounter significant challenges:

1) Insufficient Interaction Between Detection and Track-
ing: Many existing methods treat detection and
tracking as separate processes, often relying on the
Tracking-by-Detection paradigm. This limits the mu-
tual enhancement between detection and tracking, as
detection results are primarily optimized for track-
ing while failing to incorporate the valuable priors
that tracking can provide for detection—an essential
aspect for temporal consistency in dynamic environ-
ments.

2) Insufficient Utilization of 3D Spatial Information:
Current methods often adapt 2D identity associa-
tion techniques to 3D scenarios without fully har-
nessing the spatial richness of 3D point clouds.
This limitation is particularly pronounced in vehicle-
infrastructure cooperative contexts, where precise
spatial alignment and 3D pose estimation are key for
robust identity association.

3) Challenges in Occlusion Handling: Occlusion is a
common occurrence in real-world autonomous driv-
ing scenarios, yet existing methods struggle to main-
tain consistent object identities when visibility is
compromised. Effective mechanisms to handle occlu-
sion and manage identity switches during visibility
transitions remain underdeveloped.

These limitations underscore the need for more integrated,
adaptive, and robust approaches to 3D MOT in vehicle-
infrastructure cooperative scenarios. To address these chal-
lenges, we propose a novel vehicle-infrastructure cooperative
3D multi-object tracking algorithm based on an integrated
detection and tracking architecture. By leveraging LiDAR
point cloud data from both vehicle and infrastructure sources,
our method provides a more accurate and real-time solution for
3D object detection and tracking. Specifically, it introduces the
following key innovations:

1) Integrated Detection and Tracking Framework: We
propose a fully integrated architecture that processes
detection and tracking in a unified manner. By em-
ploying position encoding and cross-attention mech-
anisms, the framework seamlessly combines appear-
ance and motion cues. Additionally, a temporal prior
enhancement module is introduced, allowing tracking
results to inform the detection process, leveraging

www.ijacsa.thesai.org 1228 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

temporal priors to improve detection accuracy.
2) 3D-Task Adaptive Identity Association: Our method

takes full advantage of 3D spatial pose information
from LiDAR point clouds. We introduce a new iden-
tity association metric that accounts for spatial over-
lap, positional similarity, and orientation alignment,
enabling robust object matching over time in 3D
space.

3) Occlusion-Adaptive Matching Algorithm: We present
a four-stage cascade matching algorithm that dy-
namically adjusts the tracking process based on the
confidence levels of detection and prediction results.
This strategy ensures robust tracking during occlusion
events, effectively maintaining object identities even
when objects are partially or fully hidden from view.

The remainder of this paper is organized as follows:
Section II reviews related work, discussing existing approaches
to vehicle-infrastructure cooperative 3D perception. Section
III describes the proposed integrated detection and tracking
framework in detail. Section IV outlines the experimental
setup and results, covering datasets, evaluation metrics, and
comprehensive analyses. Section V concludes the paper with
final remarks and future research directions.

II. RELATED WORK

This section discusses recent developments in vehicle-
infrastructure cooperative perception and multi-object track-
ing (MOT), both critical for improving autonomous driving
systems.

A. Vehicle-Infrastructure Cooperative Perception

Cooperative perception enhances the perception capa-
bilities of individual vehicles by integrating data from
infrastructure-based sensors. It can be categorized into three
main types based on the shared data:

1) Data-Level Cooperation: In data-level cooperation, raw
sensor data such as LiDAR point clouds are directly shared be-
tween vehicles and infrastructure [1], [14], [29]. This approach
allows vehicles to expand their perception range significantly
by receiving unprocessed sensor data from other sources.
However, the substantial data transmission requirements place
a significant burden on network bandwidth.

2) Feature-Level Cooperation: Feature-level cooperation
involves sharing pre-processed feature data, reducing the trans-
mission load while retaining more information than object-
level cooperation [17], [6], [5]. The performance of feature-
level cooperation depends heavily on the feature fusion strate-
gies employed, balancing between bandwidth savings and the
amount of retained information.

3) Object-Level Cooperation: In object-level cooperation,
only the final detection results are shared, minimizing the data
transmission burden but potentially leading to information loss
[24]. This method relies heavily on the accuracy and robustness
of the individual perception models used on each vehicle and
infrastructure component.

The emergence of large-scale cooperative perception
datasets, both in simulation and real-world environments, has
greatly advanced research in this domain. Notable examples

include V2X-Sim [10], DAIR-V2X-C [24], and V2X-Seq [25],
with V2X-Seq standing out as the first real-world dataset
for vehicle-infrastructure sequential perception. These datasets
provide comprehensive data for 3D object detection and
tracking tasks, offering a foundation for further research in
cooperative perception.

B. Multi-Object Tracking

In cooperative perception, multi-object tracking (MOT)
plays a critical role in maintaining object identities over
time by associating detected objects across frames, forming
a temporal understanding of their movement. MOT is crucial
for downstream tasks such as trajectory prediction and colli-
sion avoidance in autonomous driving. The process typically
involves three main stages: object detection and feature repre-
sentation, identity association, and trajectory management.

1) Object Detection and Feature Representation: This
stage handles the initial detection and feature extraction from
sensory data, which is critical for tracking objects across time.
Traditionally, these tasks have been performed separately, with
detection followed by feature extraction. One prominent exam-
ple of this approach is DeepSort [19], which uses a Kalman fil-
ter for motion modeling and a deep learning-based appearance
descriptor for object re-identification, offering a robust solution
for tracking objects across frames while maintaining their
identities. Recent methods, such as OmniTracker [16], focus
on exploring the interplay between detection and tracking and
transferring this relationship to various tracking tasks. This
separation allows for independent optimization of detection
and tracking, but it may lead to redundant computations.

Joint detection and feature representation, on the other
hand, combines detection and tracking into a single network,
improving the efficiency of multi-object tracking. Popular
methods like FairMOT [27] and TransTrack [15] employ joint
architectures where object detection and feature extraction
are performed simultaneously, reducing the computational
overhead while improving feature consistency. TransMOT [4]
introduces a spatio-temporal graph transformer for encoding
short trajectories and matching them across frames using
a spatial graph decoder. Additionally, UTM [23] simultane-
ously enhances object detection and feature representation us-
ing identity-sensitive knowledge. Despite these advancements,
challenges remain, especially in 3D multi-object tracking,
where integrating motion cues and spatial information from
point cloud data requires sophisticated handling of dynamic
environments.

2) Identity Association: Identity association is critical for
tracking objects across multiple frames and ensuring that each
object maintains a consistent identity. Various metrics have
been proposed to perform this association. Early works such as
AB3DMOT [18] rely on simple intersection-over-union (IoU)
metrics to associate objects between frames. However, this
method struggles with occlusions and complex 3D environ-
ments. Recent researches such as Chiu et al. [3] and Center-
Point [22] improve identity association by replacing traditional
IoU with more sophisticated metrics like Mahalanobis and L2
distance. These metrics help capture both spatial overlap and
the underlying distribution of data points, enhancing tracking
accuracy, especially in complex 3D environments where simple
IoU metrics may struggle.
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Fig. 1. The temporal perception process in vehicle-infrastructure cooperative sensing: The process comprises two main parts: data fusion and object
detection-tracking, producing a 3D perception output with identity information.

Advanced association methods have been developed to
handle more complex scenarios. C-BIoU [21] improves tra-
ditional IoU-based matching by introducing a buffer region
around the bounding boxes, enhancing matching accuracy
under occlusion. EagerMOT [7] incorporates velocity and
directionality into the association process, leveraging motion
cues to improve association reliability. Another advanced met-
ric, DIoU [28], introduces distance and aspect ratio terms
into the IoU calculation, improving matching accuracy in
2D scenarios. These identity association techniques aim to
reduce false positives and increase the robustness of tracking
in dynamic environments where objects may be occluded or
exhibit erratic movement.

3) Trajectory Management: The final stage of MOT in-
volves managing the trajectories of objects across frames.
The goal is to maintain accurate object tracks while adding,
updating, or removing object trajectories as necessary. Early
methods such as SORT [2] use a simple bipartite graph match-
ing approach to link detected objects between consecutive
frames. This method provides a fast and efficient solution but
is limited in handling occlusions and long-term tracking.

More advanced techniques, such as DeepSort [19], use
a cascade matching strategy where recently updated trajec-
tories are prioritized during the matching process, allowing
for better handling of short-term occlusions. ByteTrack [26]
takes this approach further by splitting detections into high
and low-confidence categories, first matching high-confidence
detections with tracked objects, and then using low-confidence
detections to match occluded objects. This technique improves
the continuity of object trajectories during occlusions. Recent
methods like SimpleTrack [12] adapt ByteTrack’s methodology
to 3D tracking tasks, introducing confidence-based updates to
better handle occlusion in real-world environments. Another
recent method, SimTrack [11], criticizes the heuristic match-
ing approach of earlier methods, arguing that it relies too
heavily on manual tuning. Instead, SimTrack proposes using a
confidence-weighted matching strategy between the predicted
object locations and the detected objects, simplifying the
tracking process while improving robustness. These trajectory
management strategies aim to maintain object continuity across
time, especially when objects undergo occlusions or disappear
from the field of view temporarily.

Despite the progress made, several challenges remain in
multi-object tracking, especially in 3D environments where
spatial and temporal dynamics are more complex. One major
limitation is the failure to fully integrate the strengths of

both object detection and tracking, which are often treated
as independent tasks. Furthermore, current 3D identity as-
sociation metrics do not make full use of the precise pose
information available in point clouds, hindering matching
accuracy. Moreover, cross-frame matching strategies fail to
leverage both detection and prediction dimensions to fully
explore and maintain object identity, particularly in complex
and dynamic environments. These gaps highlight areas for
further research and improvement.

III. METHODOLOGY

In the case where the vehicle and infrastructure sensors
collect data at consistent frequencies, the input for the vehicle-
infrastructure cooperative 3D multi-object tracking task can be
described in two parts:

1. The infrastructure-side sensor data sequence Sinf, as
shown in Eq. (1), where Xinf

n represents the infrastructure sen-
sor data from the n-th pair of vehicle-infrastructure matched
data. The corresponding timestamp sequence for the infras-
tructure data is denoted as Tinf, as shown in Eq. (2).

Sinf = {Xinf
n }Nn=1 (1)

Tinf = {tinf
n }Nn=1 (2)

2. The vehicle-side sensor data sequence Sveh, as shown
in Eq. (3), where Xveh

n represents the vehicle sensor data
from the n-th pair of vehicle-infrastructure matched data.
The corresponding timestamp sequence for the vehicle data
is denoted as Tveh, as shown in Eq. (4).

Sveh = {Xveh
n }Nn=1 (3)

Tveh = {tveh
n }Nn=1 (4)

As shown in Fig. 1, the vehicle-infrastructure cooperative
3D multi-object tracking process is composed of two main
parts: information extraction and fusion, and object detection
and tracking. These are further divided into four stages:

• Data Transmission and Fusion: This stage involves
pre-processing vehicle and infrastructure point cloud
data. The data is transmitted over limited bandwidth
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to the vehicle side, where it is fused with the vehicle’s
sensor data.

• Object Detection and Feature Representation: This
stage detects 3D objects from the fused sensor data
and represents the temporal variations in the object
features.

• Identity Association: The system builds a unified iden-
tity association benchmark for objects across frames
based on their features. A cost matrix is generated to
match objects across frames.

• Trajectory Management: Based on the cost matrix
from identity association, the system performs match-
ing between detected objects and existing tracks. It
also handles adding, deleting, and updating tracks,
ultimately producing a unified 3D spatiotemporal per-
ception result with identity information.

A. Data Transmission and Fusion Using the FF-Tracking
Framework

This section leverages the FF-Tracking [25] framework as
outlined in V2X-Seq. The Data Transmission and Fusion
process, as illustrated in Fig. 2, is designed to facilitate sensor
data exchange between the vehicle and infrastructure under
limited bandwidth conditions.

1) Infrastructure Side: On the infrastructure side, sensor
data at timestamp tinf

n is processed through the Pillar Feature
Network (PFNet) [9] to extract BEV (Bird’s Eye View) fea-
tures. The extracted BEV feature map is represented as:

Finf
n = PFNet(Xinf

n ), (5)

where Xinf
n is the raw point cloud data from the infrastructure

sensors, and Finf
n is the BEV feature extracted at time tinf

n .

Next, a Feature Flow Generator is employed to capture the
temporal dynamics between consecutive infrastructure frames.
Given the BEV feature map from the current timestamp tinf

n
and the previous timestamp tinf

n−1, the feature flow Fflow
n is

computed as:

Fflow
n = FlowGenerator(Finf

n ,Finf
n−1), (6)

where the FlowGenerator module is built with two Backbone-
FPN structures, one branch generates static features Fstatic,
and the other branch generates the feature derivative Fderiv.
This module computes the temporal differences between the
two frames, capturing how the scene evolves over time. The
feature flow is compressed using a convolutional layer to
reduce bandwidth requirements:

Fcomp
n = Conv(Fflow

n ), (7)

where Fcomp
n represents the compressed feature flow ready for

transmission.

2) Vehicle Side: Once the infrastructure-side compressed
feature flow Fcomp

n is transmitted to the vehicle side, it under-
goes Deconvolution to reconstruct the infrastructure features
at the vehicle’s side:

Frec
n = Deconv(Fcomp

n ), (8)

where Frec
n denotes the reconstructed feature map, which can

be divided into two parts: one part represents the static feature
Fstatic

n , and the other part represents the feature derivative Fderiv
n .

Next, the vehicle aligns the reconstructed infrastructure
features to its own current timestamp tveh

n using the Prediction
and Affine Transform module. This module compensates for
temporal misalignment between the infrastructure and vehicle
data:

Falign
n = AffineTransform(Fstatic

n + (tveh
n − tinf

n ) · Fderiv
n ), (9)

where Falign
n represents the aligned infrastructure features in

the vehicle’s frame of reference.

Simultaneously, the vehicle extracts its own features Fveh
n

from its sensor data Xveh
n :

Fveh
n = FeatureExtractor(Xveh

n ). (10)

Finally, the vehicle-side features and the aligned infrastruc-
ture features are concatenated and convolved to form the fused
feature map Ffused

n :

Ffused
n = Conv(Concat(Fveh

n ,Falign
n )). (11)

This fused feature map, containing both vehicle-side and
infrastructure-side data, is passed to the detection and tracking
modules for further processing.

B. Integrated Object Detection and Tracking

In this section, we describe the proposed integrated object
detection and tracking framework, utilizing a Deformable
DETR-based architecture for both encoding and decoding
stages, as shown in Fig. 3. The architecture is composed of the
following core components: Temporal Prior Enhancement,
Encoder, and two parallel branches for Object Detection and
Object Prediction.

1) Temporal Prior Enhancement: The input to the Tempo-
ral Prior Enhancement module consists of the fused feature
maps from two consecutive frames, Ffused

n and Ffused
n−1. To

save computational resources, the fused feature map from the
previous frame is stored and used in the next frame for prior
enhancement. The previous frame’s fused feature map, Ffused

n−1,
is downsampled and serves as the keys (K) and values (V)
for the cross-attention mechanism. The current frame’s fused
feature map, Ffused

n , is used as the queries (Q).

The cross-attention mechanism computes the weighted
combination of the features as follows:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, (12)

where Q = Ffused
n is the query from the current frame, and K,

V = Ffused
n−1 are the key and value from the previous frame. The

term dk represents the dimension of the key, which is used to
scale the dot product between the query and key to prevent
the result from becoming too large. After cross-attention, the
resulting feature map undergoes further refinement through a
Multilayer Perceptron (MLP) for introducing non-linearity and
enhancing the model’s capacity to capture complex relation-
ships in the data:

Fenhanced
n = MLP(Attention(Ffused

n ,Ffused
n−1)). (13)
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Fig. 2. The architecture of the data transmission and fusion module using the FF-Tracking framework. Infrastructure-side features are compressed and
transmitted to the vehicle, where they are deconvolved, temporally and spatially aligned, and fused with vehicle-side data.

Fig. 3. The overall architecture for integrated object detection and tracking using deformable DETR. The process includes temporal prior enhancement,
encoding, and two parallel branches for object detection and prediction, which jointly contribute to tracking results.

The output is the enhanced feature map Fenhanced
n , which

integrates temporal information from the previous frame to
improve the accuracy and stability of detection and tracking
in the current frame.

2) Encoder: The enhanced feature Fenhanced
n is passed to

a Deformable DETR Encoder [30], which applies deformable
attention over a set of reference points P distributed across
the feature map. These reference points guide the attention
mechanism, allowing it to focus on relevant regions, which is
particularly suitable for sparse input data like point clouds:

Zenc
n = DeformableAttention(Fenhanced

n ,K,V,P), (14)

where Zenc
n is the output of the encoder, and K, V are derived

from the same enhanced feature map Fenhanced
n .

3) Object Detection Branch: The Object Detection Branch
uses the encoded feature Zenc

n and processes it through a
Deformable DETR decoder to detect objects within the current
frame. The decoder utilizes a set of learnable object queries
Qobj to retrieve object features:

Fobj
n = Decoder(Qobj,Zenc

n ), (15)

where Fobj
n represents the detected object features. These

features are passed to a feedforward neural network (FFN)
to generate detection bounding boxes Bdet

n :

Bdet
n = FFN(Fobj

n ). (16)

4) Object Prediction Branch: Simultaneously, the Object
Prediction Branch tracks objects by predicting their locations
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in the next frame based on past tracking information. The
encoded feature Zenc

n is processed with the track query Qtrack

which is the object features Fobj
n−1 in the previous frame,

retrieving the tracking features Ftrack
n :

Ftrack
n = Decoder(Qtrack,Zenc

n ). (17)

These features are processed through another FFN to predict
the locations of objects from the previous frame in the current
frame, providing the propagated positions for the tracked
objects Bpred

n :
Bpred

n = FFN(Ftrack
n ). (18)

5) Identity Association and Trajectory Management: The
detected objects and predicted objects are matched using an
identity association module, which computes a cost matrix
between detection and prediction bounding boxes. This cost
matrix is used to associate objects between frames. The
tracking results are then managed in the trajectory manage-
ment module, which updates existing trajectories, adds new
trajectories, and deletes lost trajectories.

6) Advantages of Integrated Design: The integrated de-
sign of this architecture, based on Deformable DETR, allows
simultaneous object detection and tracking within the same
pipeline. By sharing the same enhanced features and attention
mechanisms between detection and prediction branches, the
architecture efficiently combines object detection and tracking
tasks. This integration fully leverages the complementary rela-
tionship between detection and tracking, as the temporal prior
information enhances the consistency of the features, allowing
detection and tracking to mutually benefit from each other’s
information.

C. Identity Association Using XIOU Metric

In our approach, we propose a novel XIOU metric for
identity association between detected and predicted objects.
This metric incorporates three key factors: Intersection over
Union (IOU), center point distance, and yaw angle difference
between the two bounding boxes (as shown in Fig. 4).

Fig. 4. Visualization of XIOU elements: IOU, center point distance, and yaw
angle difference.

First, the basic IOU is calculated between the detection
bounding box Bdet and the prediction bounding box Bpred,
which measures the overlap between the two boxes:

IOU(Bdet,Bpred) =
VI

VU
, (19)

where VI is the intersection volume of the two 3D bounding
boxes, and VU is their union volume.

To improve upon the limitations of IOU in cases where
there is no overlap between the two boxes, the Generalized
IOU (GIOU) [13] metric is used:

GIOU(Bdet,Bpred) =
VI

VU
− VC − VU

VC
, (20)

where VC is the volume of the smallest convex shape enclosing
both Bdet and Bpred. GIOU extends IOU by adding a distance-
based penalty term, addressing cases where IOU is zero due
to non-overlapping boxes.

Building on GIOU, our XIOU metric further integrates
orientation and distance between the center points of the two
boxes:

Gcos(θBdet , θBpred) = cos(θBdet − θBpred) + 1, (21)
Giou(B

det,Bpred) = GIOU(Bdet,Bpred) + 1, (22)

XIOU(Bdet,Bpred) =
Giou ×Gcos

4
, (23)

where θBdet and θBpred represent the yaw angles (orientations) of
the detection and prediction bounding boxes, respectively. This
term captures the orientation difference between the boxes,
while the GIOU term handles their spatial relationship.

Our XIOU metric offers improved performance in 3D
environments by taking into account the spatial overlap, ori-
entation similarity, and distance between objects. This makes
it particularly well-suited for 3D object tracking tasks, where
precise alignment of object positions and orientations is crucial
for maintaining consistent identities across frames.

D. Trajectory Management with Cascade Matching

Trajectory management plays a critical role in maintaining
accurate object tracking over time. This step involves matching
detected objects with existing trajectories, updating object
tracks, and handling the creation or deletion of tracks as
necessary. Traditional approaches, such as ByteTrack, employ
a two-stage matching process, starting with high-confidence
detections followed by low-confidence ones. However, this
approach struggles in occlusion scenarios. As shown in Fig.
5(a), object detection confidence gradually decreases during
occlusion, while Fig. 5(b) shows how confidence slowly re-
covers when occlusion fades.

Fig. 5. (a) Confidence decline during occlusion. (b) Confidence recovery
after occlusion. The figures illustrate how detection confidence changes

when objects are occluded and when occlusion diminishes.

To address the challenges of tracking objects under oc-
clusion, we introduce a Four-Stage Cascade Matching
(FSCM) algorithm. This method improves upon previous
approaches by dividing detection results and track predictions
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into high-confidence and low-confidence categories, handling
them across four stages. Each stage applies the Hungarian al-
gorithm to perform the matching based on the XIOU similarity
metric, which considers object overlap, orientation, and spatial
alignment.

1) Stage 1: High-confidence Detection and High-
confidence Track Matching: In the first stage, detections and
tracks are divided into high-confidence and low-confidence
sets based on predefined thresholds. A detection is considered
high-confidence if its detection score sd exceeds the detection
threshold md, and similarly, a track is considered high-
confidence if its tracking confidence score st exceeds the
tracking threshold mt. High-confidence detections Dhigh are
matched with high-confidence tracks Thigh. The cost matrix
is computed as:

Chigh = 1− XIOU(Dhigh,Thigh). (24)

The Hungarian [8] algorithm is applied to minimize the cost
matrix Chigh. The matched detections and tracks are processed,
while the unmatched ones are passed to the next stage.

2) Stage 2: Low-confidence Detection and High-confidence
Track Matching: Low-confidence detections (sd < md), de-
noted as Dlow, are matched with the high-confidence tracks
(st ≥ mt) that remained unmatched from the previous stage.
This is useful for handling partially occluded objects whose
detection scores have decreased, while their tracking predic-
tions remain reliable. The cost matrix is calculated as:

Clow-high = 1− XIOU(Dlow,Thigh), (25)

and the Hungarian algorithm matches the remaining high-
confidence tracks with low-confidence detections.

3) Stage 3: High-confidence Detection and Low-confidence
Track Matching: In this stage, high-confidence detections
Dhigh are matched with low-confidence tracks Tlow, which
were not matched in the previous stages. This helps recover
objects that were previously occluded but are now detected
with high confidence:

Chigh-low = 1− XIOU(Dhigh,Tlow). (26)

Again, the Hungarian algorithm is used to assign detections to
tracks, updating the trajectories for reappearing objects.

4) Stage 4: Low-confidence Detection and Low-confidence
Track Matching: Finally, low-confidence detections Dlow are
matched with low-confidence tracks Tlow. This step manages
prolonged occlusion or potential false detections:

Clow = 1− XIOU(Dlow,Tlow). (27)

The Hungarian algorithm minimizes the cost matrix, and
matched detections and tracks are processed.

5) Unmatched Detections and Tracks: If any high-
confidence detections remain unmatched, they are used to
initialize new tracks. Unmatched low-confidence detections are
discarded as background noise. Tracks that remain unmatched
are retained for N frames. If tracks remain unmatched beyond
the threshold, they are deleted from the system.

6) Summary of FSCM Algorithm: This four-stage cascade
matching algorithm divides both detections and predictions
into high-confidence and low-confidence categories, leveraging
the XIOU metric at each stage. The Hungarian algorithm is
employed in all stages to ensure optimal matching. By pro-
gressively refining the matching process, this method ensures
robust tracking, even under occlusion, and takes full advantage
of detection and prediction confidences.

IV. EXPERIMENTS

The primary goal of our experiments is to validate the ef-
fectiveness and robustness of the proposed method for vehicle-
infrastructure cooperative 3D multi-object tracking. We con-
duct a series of experiments on the V2X-Seq dataset to evaluate
the tracking performance under varying latency conditions and
compare it with several state-of-the-art methods. Additionally,
we perform an ablation study to investigate the contributions
of the key modules in our architecture, including the integrated
detection-tracking framework, XIOU identity association, and
four-stage cascade matching (FSCM).

A. Dataset and Evaluation Metrics

Our experiments are conducted on the V2X-Seq dataset,
the first large-scale real-world dataset specifically designed for
vehicle-infrastructure cooperative 3D multi-object tracking. It
contains over 15,000 pairs of synchronized vehicle-side and
infrastructure-side frames, with each pair including 3D LiDAR
point clouds and annotations with tracking IDs. All vehicle and
infrastructure data in V2X-Seq are time-synchronized and spa-
tially aligned, making it ideal for evaluating cooperative track-
ing performance in real-world scenarios. With over 150,000
frames across more than 200 sequences, V2X-Seq provides
diverse traffic environments and object dynamics, offering a
comprehensive benchmark for assessing tracking accuracy and
robustness, especially under challenging conditions such as
occlusions and communication delays. We use the following
evaluation metrics to compare the performance of different
methods:

• MOTA (Multi-Object Tracking Accuracy): MOTA re-
flects the overall tracking accuracy by considering
three factors: false positives, missed targets, and iden-
tity switches. Higher values indicate better perfor-
mance.

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

, (28)

where FNt, FPt, and IDSWt are the false negatives,
false positives, and identity switches at time t, and
GTt is the number of ground truth objects.

• MOTP (Multi-Object Tracking Precision): MOTP
evaluates the localization precision of the tracked
objects by computing the average distance between
the predicted and ground-truth object locations.

MOTP =

∑
t

∑
i d

i
t∑

t ct
, (29)

where dit is the distance between the predicted and
ground-truth locations for object i at time t, and ct is
the number of matched object pairs at time t.
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TABLE I. COMPARISON OF TRACKING PERFORMANCE ON THE V2X-SEQ DATASET UNDER DIFFERENT LATENCY CONDITIONS

Latency(ms) Fusion Type Method MOTA↑ MOTP↑ IDS↓ BPS↓(Byte/s)

0

Object-Level Hungarian [8] 53.18 72.35 273 3.3 × 103

Data-Level Concat [25] 56.03 70.17 296 1.3 × 107

Feature-Level FF-Tracking [25] 54.75 69.76 222 6.2 × 105

Feature-Level Ours 57.23 74.64 206 6.2 × 105

200

Object-Level Hungarian [8] 50.32 71.58 260 3.3 × 103

Data-Level Concat [25] 51.27 69.67 234 1.3 × 107

Feature-Level FF-Tracking [25] 52.26 69.64 225 1.2 × 106

Feature-Level Ours 55.76 74.15 219 1.2 × 106

• IDS (Identity Switches): This metric tracks identity
changes during tracking, with lower values indicating
better performance.

• BPS (Bytes Per Second): This metric measures the
bandwidth for vehicle-infrastructure communication,
defined as the data exchanged per second in bytes.

B. Implementation Details

Our model employs a backbone network and FPN structure
similar to that used in SECOND [20], optimized using the
AdamW optimizer. The initial learning rate is set to 1×10−4,
and we use 500 queries during training. Both decoders are
trained with identical loss functions, incorporating a classi-
fication loss and XIOU loss as the final objective. For the
tracking process, we set the detection score threshold md to
0.5, tracking score threshold mt to 0.4, and retain unmatched
trajectories for N = 20 frames. The network is implemented in
Pytorch and trained on an NVIDIA GeForce RTX 3090 GPU.

In the inference phase, the first frame’s feature map serves
as the prior frame’s feature for downsampling and temporal
prior enhancement. Simultaneously, the track query initializes
with the object features from the first frame. From the second
frame onward, the point cloud feature sequence is processed
following the methodology described, outputting tracking re-
sults across all frames.

C. Comparison with State-of-the-Art Methods

We compare the performance of our method against several
approaches in the V2X-Seq dataset under two latency con-
ditions: 0 ms and 200 ms. The methods include data-level,
object-level, and feature-level fusion techniques, specifically:

• Concat (Data-Level) [25]: In this method, the in-
frastructure point cloud is transformed to the vehi-
cle’s coordinate system, where pseudo-images from
both vehicle and infrastructure are concatenated. This
approach uses the PointPillars detector and follows
AB3DMOT’s TBD (tracking-by-detection) paradigm
for multi-object tracking.

• Hungarian (Object-Level) [8]: In this approach, vehi-
cle and infrastructure detections are performed inde-
pendently. Detected object sets from both vehicle and
infrastructure are transmitted and matched using the
Hungarian algorithm to fuse results.

• FF-Tracking (Feature-Level) [25]: This method trans-
mits the feature flow between consecutive frames
from the infrastructure to the vehicle, reducing data
transmission while maintaining accuracy.

As shown in Table I, our method consistently outperforms
others across key metrics, particularly in MOTA, achieving
57.23 at 0 ms latency—1.2 points higher than Concat (56.03)
and 4.05 points higher than Hungarian (53.18). This improve-
ment reflects the combined contributions of our integrated
detection-tracking framework, XIOU identity association, and
four-stage cascade matching (FSCM). In terms of MOTP, our
method achieves 74.64, surpassing Concat’s 70.17 and Hungar-
ian’s 72.35, highlighting its effective use of 3D positional and
orientational information. Additionally, with the lowest IDS
score of 206, it demonstrates robust identity association and
trajectory management.

Under the 200 ms delay condition, our method maintains
high tracking accuracy with a MOTA of 55.76, outperforming
Concat (51.27) and Hungarian (50.32). The MOTP remains
at 74.15, the highest among all methods, while the IDS count
remains low at 219. These results demonstrate the resilience of
our approach to communication delays, inheriting the robust-
ness of the FF-Tracking framework. By preserving temporal
consistency in feature flow and leveraging efficient identity
association, the proposed framework effectively mitigates the
negative impact of delayed data transmission.

In terms of data transmission efficiency, our method
achieves a transmission rate of 6.2 × 105 Byte/s, which is
over 20 times lower than Concat (1.3 × 107 Byte/s). This
substantial reduction is achieved through feature-level fusion,
which transmits compressed feature flows. Despite this lower
bandwidth usage, our method provides a 4% higher MOTA,
highlighting its ability to optimize communication resources
while improving tracking accuracy.

D. Ablation Study

We conduct an ablation study to quantify the contributions
of our three key modules: the integrated detection-tracking
framework, XIOU identity association, and the four-stage
cascade matching (FSCM) algorithm. The baseline method,
AB3DMOT, is used for comparison by systematically replac-
ing each module in our framework with the corresponding
component from AB3DMOT. The results are presented in
Table II.

1) Impact of the Integrated Detection-Tracking Framework:
Replacing our integrated detection-tracking framework with
AB3DMOT’s tracking-by-detection (TBD) paradigm results
in a 2.1-point decrease in MOTA (from 57.23 to 55.13).
This indicates the unified framework’s critical role in bridging
detection and tracking, enabling the detection branch to benefit
from tracking priors while allowing the tracking branch to
leverage enhanced detection results. The observed drop in

www.ijacsa.thesai.org 1235 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 11, 2024

TABLE II. ABLATION STUDY ON THE V2X-SEQ DATASET

Method Tracking Framework Identity Association Trajectory Management MOTA↑ MOTP↑ IDS↓
AB3DMOT TBD IOU Single Matching 54.75 69.76 222

Ours Integrated XIOU FSCM 57.23 74.64 206
1 TBD XIOU FSCM 55.13 72.43 208
2 Integrated IOU FSCM 56.72 73.58 214
3 Integrated XIOU Single Matching 55.38 74.16 215

MOTA demonstrates that separating detection and tracking in-
creases errors, for example, in scenarios involving fast-moving
or partially occluded objects. By integrating detection and
tracking within the same pipeline, our framework effectively
reduces identity switches and improves object recall, ensuring
robust performance in dynamic traffic environments.

2) Impact of XIOU Identity Association: When XIOU is re-
placed with AB3DMOT’s IOU, MOTA drops by 0.51 points
(from 57.23 to 56.72), and IDS increases by 3.9% (from 206
to 214). This demonstrates XIOU’s ability to capture spatial
and orientation consistency, which is particularly beneficial in
occlusion-heavy environments. XIOU effectively resolves am-
biguous matches between detection and prediction bounding
boxes by incorporating yaw angle and center-point distance,
leading to improved identity consistency and reduced errors
during complex interactions between vehicles. In contrast, IOU
struggles to maintain identity consistency when objects overlap
or move in close proximity, leading to more identity switches
and reduced tracking accuracy.

3) Impact of the Four-Stage Cascade Matching (FSCM):
Replacing our four-stage cascade matching (FSCM) algorithm
with AB3DMOT’s single matching strategy increases IDS by
4.3% (from 206 to 215) and reduces MOTA by 1.85 points
(from 57.23 to 55.38). These results highlight FSCM’s ability
to manage trajectory updates effectively, particularly in han-
dling occlusions and reappearing objects. FSCM dynamically
adapts to the confidence levels of both detections and tracks,
ensuring robust identity associations across frames. Single
matching, on the other hand, lacks this flexibility, resulting in
higher identity switches and degraded tracking performance,
particularly in challenging scenarios with frequent occlusions
or sudden object reappearances. By incorporating FSCM, our
method achieves lower IDS and higher MOTA, demonstrating
its importance for maintaining accurate and consistent trajec-
tories under complex real-world conditions.

4) Module Contribution Analysis: Among the three mod-
ules, the integrated detection-tracking framework contributes
the largest MOTA gain (2.1 points), highlighting its signifi-
cant impact on overall tracking accuracy. FSCM provides the
second-highest gain (1.85 points in MOTA), underscoring its
importance in trajectory management under challenging condi-
tions. XIOU, while contributing a relatively smaller MOTA im-
provement (0.51 points), plays a crucial role in reducing IDS,
demonstrating its effectiveness in identity association tasks.
Collectively, these modules form a robust system that achieves
superior performance compared to traditional methods.

E. Challenges and Future Directions

1) Bandwidth Efficiency: Although our method signifi-
cantly reduces data transmission compared to data-level fu-
sion methods, the bandwidth requirement (6.2 × 105 Byte/s)

remains relatively high compared to object-level methods like
Hungarian. This poses challenges for large-scale deployment in
real-world bandwidth-constrained environments. Future work
should focus on optimizing feature extraction and compres-
sion strategies to further reduce transmission overhead while
maintaining tracking accuracy.

2) Handling Long Occlusions and Disappearances: While
the proposed framework effectively addresses moderate occlu-
sions and identity switches, it struggles in scenarios involving
long-term occlusions or complete object disappearances. For
instance, re-associating objects after prolonged absence re-
mains challenging. Future efforts could focus on incorporating
adaptive temporal modeling techniques and improved motion
prediction strategies to enhance the system’s robustness in such
complex and dynamic environments.

V. CONCLUSION

In this work, we proposed an innovative framework for
vehicle-infrastructure cooperative 3D multi-object tracking,
emphasizing three key contributions: an integrated detection-
tracking framework, the XIOU identity association metric, and
a four-stage cascade matching (FSCM) strategy. The integrated
framework enhances both detection accuracy and tracking
consistency by jointly leveraging detection and tracking in-
formation. The XIOU metric improves identity association by
effectively incorporating 3D spatial information, while FSCM
provides robust tracking continuity in occlusion scenarios.
Experimental results on the V2X-Seq dataset validate the
effectiveness of these innovations, with our method demon-
strating superior tracking accuracy, reduced identity switches,
and low bandwidth usage even under delayed communication
conditions. These results underscore the potential of feature-
level fusion and temporal prior enhancement in real-world
V2X applications. Future work will focus on optimizing
bandwidth efficiency through improved feature extraction and
compression, and enhancing robustness in handling long-term
occlusions and dynamic scenarios with adaptive temporal
modeling and motion prediction, paving the way for more
reliable and efficient V2X applications.
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